
© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 15 
 

Software Engineering Concepts and Models  

 

* Meenakshi Rathod, Assistant Professor, Dept of Computer Science, Govt First Grade College, 

Shapur. 

**Sampatkumari.M.Bandagar,  Assistant Professor and HOD of Computer Science, Govt First Grade 

College, Humanabad. 

***Dr.Basavaprasad.B.  Assistant Professor and HOD of Computer Science, Govt First Grade 

College, Raichur. 

 

Abstract 

This paper attempts to study software engineering concepts, which are developed in to models for 

better product deployment. There are many different types of software systems from simple to complex 

systems. These systems may be developed for a particular customer, like systems to support a particular 

business process, or developed for a general purpose, like any software for our computers such as word 

processors. 

Many systems are now being built with a generic product as base, which is then adapted to suit the 

requirements of a customer such as SAP system. A good software should deliver the main required 

functionality. Other set of attributes — called quality or non-functional — should be also delivered. Examples 

of these attributes are, the software is written in a way that can be adapted to changes, response time, 

performance (less use of resources such as memory and processor time), usable; acceptable for the type of the 

user it’s built for, reliable, secure, safe, …etc. Software engineering is an engineering discipline that’s applied 

to the development of software in a systematic approach (called a software process). It’s the application of 

theories, methods, and tools to design build a software that meets the specifications efficiently, cost-

effectively, and ensuring quality. It’s not only concerned with the technical process of building a software, it 

also includes activities to manage the project, develop tools, methods and theories that support the software 

production. Not applying software engineering methods results in more expensive, less reliable software, and 

it can be vital on the long term, as the changes come in, the costs will dramatically increase. Different methods 

and techniques of software engineering are appropriate for different types of systems. For example, games 

should be developed using series of prototypes, while critical control systems require a complete analyzable 

specification to be developed. Computer science focuses on the theory and fundamentals, like algorithms, 

programming languages, theories of computing, artificial intelligence, and hardware design, while software 

engineering is concerned with the activities of developing and managing a software. Model driven design 

develops textual and graphical models as primary design artifacts. Development tools are available that use 

model transformation and code generation to generate well-organized code fragments that serve as a basis for 

producing complete applications. 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 16 
 

Key words:  Software engineering, concepts, models , design artifacts,  deployment 

Introduction 

The first theory about software was proposed by Alan Turing in his 1935 essay Computable numbers with an 

application to the Entscheidungs problem (Decision problem). The term "software" was first used in print by 

John W. Tukey in 1958. Colloquially, the term is often used to mean application software. In computer science 

and software engineering, software is all information processed by computer system, programs and data. The 

academic fields studying software are computer science and software engineering. From its beginnings in the 

1940s, writing software has evolved into a profession concerned with how best to maximize the quality of 

software and of how to create it. Quality can refer to how maintainable software is, to its stability, speed, 

usability, testability, readability, size, cost, security, and number of flaws or "bugs", as well as to less 

measurable qualities like elegance, conciseness, and customer satisfaction, among many other attributes. How 

best to create high quality software is a separate and controversial problem covering software design 

principles, so-called "best practices" for writing code, as well as broader management issues such as optimal 

team size, process, how best to deliver software on time and as quickly as possible, work-place "culture," 

hiring practices, and so forth. All this falls under the broad rubric of software engineering. Software 

engineering is a young discipline, and is still developing. The directions in which software engineering is 

developing include: 

 

Aspects: Aspects help software engineers deal with quality attributes by providing tools to add or remove 

boilerplate code from many areas in the source code. Aspects describe how all objects or functions should 

behave in particular circumstances. For example, aspects can add debugging, logging, or locking control into 

all objects of particular types. Researchers are currently working to understand how to use aspects to design 

general-purpose code. Related concepts include generative programming and templates. 

Agile: Agile software development guides software development projects that evolve rapidly with changing 

expectations and competitive markets. Proponents of this method believe that heavy, document-driven 

processes (like TickIT, CMM and ISO 9000) are fading in importance. Some people believe that companies 

and agencies export many of the jobs that can be guided by heavy-weight processes. Related concepts include 

extreme programming, scrum, and lean software development. 

 

 

 

 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 17 
 

Objective: 

This paper intends to explore and analyze Software engineering (SE) that is concerned with developing and 

maintaining software systems that behave reliably and efficiently Also engineering practices for software 

development, and typically handles the overall system design of the software 

Software engineering concepts 

Separation of concerns is a recognition of the need for human beings to work within a limited context. As 

descibed by G. A. Miller [Miller56], the human mind is limited to dealing with approximately seven units of 

data at a time. A unit is something that a person has learned to deal with as a whole - a single abstraction or 

concept. Although human capacity for forming abstractions appears to be unlimited, it takes time and repetitive 

use for an abstraction to become a useful tool; that is, to serve as a unit. 

When specifying the behavior of a data structure component, there are often two concerns that need to be dealt 

with: basic functionality and support for data integrity. A data structure component is often easier to use if 

these two concerns are divided as much as posible into separate sets of client functions. It is certainly helful 

to clients if the client documentation treats the two concerns separately. Further, implementation 

documentation and algorithm descriptions can profit from separate treatment of basic algorithms and 

modifications for data integrity and exception handling. 

There is another reason for the importance of separation of concerns. Software engineers must deal with 

complex values in attempting to optimize the quality of a product. From the study of algorithmic complexity, 

we can learn an important lesson. There are often efficient algorithms for optimizing a single measurable 

quantity, but problems requiring optimization of a combination of quantities are almost always NP-complete. 

Although it is not a proven fact, most experts in complexity theory believe that NP-complete problems cannot 

be solved by algorithms that run in polynomial time. 

In view of this, it makes sense to separate handling of different values. This can be done either by dealing with 

different values at different times in the software development process, or by structuring the design so that 

responsibility for achieving different values is assigned to different components. 

Waterfall Model 

The Waterfall Model is a linear sequential flow. In which progress is seen as flowing steadily downwards (like 

a waterfall) through the phases of software implementation. This means that any phase in the development 

process begins only if the previous phase is complete. The waterfall approach does not define the process to 

go back to the previous phase to handle changes in requirement. The waterfall approach is the earliest approach 

and most widely known that was used for software development. 

http://www.jetir.org/
https://www.d.umn.edu/~gshute/softeng/bibliography.html#Miller56
http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 18 
 

Waterfall Model 

The usage 

Projects which not focus on changing the requirements, for example, projects initiated from a request 

for proposals (RFPs), the customer has a very clear documented requirements 

Advantages and Disadvantages 

Advantages 
Disadvantages 

 Easy to explain to the users. 

 Structures approach. 

 Stages and activities are well defined. 

 Helps to plan and schedule the project. 

 Verification at each stage ensures early detection 

of errors/misunderstanding. 

 Each phase has specific deliverables. 

 Assumes that the requirements of a 

system can be frozen. 

 Very difficult to go back to any stage 

after it finished. 

 A little flexibility and adjusting 

scope is difficult and expensive. 

 Costly and required more time, in 

addition to the detailed plan. 

  

V-Shaped Model 

Description 

It is an extension of the waterfall model, Instead of moving down in a linear way, the process steps are bent 

upwards after the implementation and coding phase, to form the typical V shape. The major difference between 

the V-shaped model and waterfall model is the early test planning in the V-shaped model. 

http://www.jetir.org/
http://en.wikipedia.org/wiki/Request_for_proposal
https://melsatar.blog/2018/08/27/the-validation-and-verification-model-the-v-model/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 19 
 

 

The usage 

 Software requirements clearly defined and known 

 Software development technologies and tools are well-known 

Advantages and Disadvantages 

Advantages 
Disadvantages 

 Simple and easy to use 

 Each phase has specific deliverables. 

 Higher chance of success over the 

waterfall model due to the development 

of test plans early on during the life 

cycle. 

 Works well for where requirements are 

easily understood. 

 Verification and validation of the 

product in the early stages of product 

development. 

 Very inflexible, like the waterfall model. 

 Adjusting scope is difficult and 

expensive. 

 The software is developed during the 

implementation phase, so no early 

prototypes of the software are produced. 

 The model doesn’t provide a clear path 

for problems found during testing 

phases. 

 Costly and required more time, in 

addition to a detailed plan 

Prototyping Model 

Description 

It refers to the activity of creating prototypes of software applications, for example, incomplete versions of the 

software program being developed. It is an activity that can occur in software development and It used to 

visualize some component of the software to limit the gap of misunderstanding the customer requirements by 

the development team. This also will reduce the iterations may occur in the waterfall approach and hard to be 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 20 
 

implemented due to the inflexibility of the waterfall approach. So, when the final prototype is developed, the 

requirement is considered to be frozen. 

It has some types, such as: 

 Throwaway prototyping: Prototypes that are eventually discarded rather than becoming a part of the 

finally delivered software 

Throwaway prototyping 

 Evolutionary prototyping: prototypes that evolve into the final system through an iterative 

incorporation of user feedback. 

Evolutionary prototyping 

 Incremental prototyping: The final product is built as separate prototypes. In the end, the separate 

prototypes are merged in an overall design. 

Incremental prototyping 

 Extreme prototyping: used in web applications mainly. Basically, it breaks down web development 

into three phases, each one based on the preceding one. The first phase is a static prototype that consists 

mainly of HTML pages. In the second phase, the screens are programmed and fully functional using a 

simulated services layer. In the third phase, the services are implemented 

The usage 

 This process can be used with any software developing life cycle model. While this shall be chosen 

when you are developing a system has user interactions. So, if the system does not have user 

interactions, such as a system does some calculations shall not have prototypes. 

Advantages and Disadvantages 

 

 

 

 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 21 
 

Spiral Model (SDM) 

Description 

It is combining elements of both design and prototyping-in-stages, in an effort to combine advantages of top-

down and bottom-up concepts. This model of development combines the features of the prototyping model 

and the waterfall model. The spiral model is favored for large, expensive, and complicated projects. This model 

uses many of the same phases as the waterfall model, in essentially the same order, separated by planning, risk 

assessment, and the building of prototypes and simulations. 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 22 
 

Spiral Model 

The usage 

It is used in the large applications and systems which built-in small phases or segments. 

 

Advantages 
Disadvantages 

 Estimates (i.e. budget, schedule, etc.) become more 

realistic as work progressed because important 

issues are discovered earlier. 

 Early involvement of developers. 

 Manages risks and develops the system into phases. 

 High cost and time to reach 

the final product. 

 Needs special skills to 

evaluate the risks and 

assumptions. 

 Highly customized limiting 

re-usability 

 

Iterative and Incremental Model 

Description 

It is developed to overcome the weaknesses of the waterfall model. It starts with an initial planning and ends 

with deployment with the cyclic interactions in between. The basic idea behind this method is to develop a 

system through repeated cycles (iterative) and in smaller portions at a time (incremental), allowing software 

developers to take advantage of what was learned during the development of earlier parts or versions of the 

system. It can consist of mini waterfalls or mini V-Shaped model 

 

 

 

http://www.jetir.org/
http://melsatar.blog/2019/01/05/let-waterfall-model-be-extinct/(opens%20in%20a%20new%20tab)


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 23 
 

The usage 

It is used in shrink-wrap application and large system which built-in small phases or segments. Also, can be 

used in a system has separated components, for example, ERP system. Which we can start with the budget 

module as a first iteration and then we can start with the inventory module and so forth. 

 

Iterative and Incremental Model 

Advantages and Disadvantages 

Advantages 
Disadvantages 

 Produces business value early in 

the development lifecycle. 

 Better use of scarce resources 

through proper increment 

definition. 

 Can accommodate some change 

requests between increments. 

 More focused on customer 

value than the linear 

approaches. 

 We can detect project issues and 

changes earlier. 

 Requires heavy documentation. 

 Follows a defined set of processes. 

 Defines increments based on function and feature 

dependencies. 

 Requires more customer involvement than the 

linear approaches. 

 Partitioning the functions and features might be 

problematic. 

 Integration between the iterations can be an issue 

if it is not considered during the development and 

project planning. 

  

Agile Model 

Description 

It is based on iterative and incremental development, where requirements and solutions evolve through 

collaboration between cross-functional teams. 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 24 
 

 

Scrum Agile Model 

The usage 

It can be used with any type of the project, but it needs more engagement from the customer and to be 

interactive. Also, we can use it when the customer needs to have some functional requirement ready in less 

than three weeks and the requirements are not clear enough. This will enable more valuable and workable 

piece for software early which also increase the customer satisfaction. 

Advantages and Disadvantages 

Advantages 
Disadvantages 

 Decrease the time required to avail some system 

features. 

 Face to face communication and continuous inputs 

from customer representative leaves no space for 

guesswork. 

 The end result is the high-quality software in the 

least possible time duration and satisfied customer. 

 Scalability. 

 The ability and collaboration of 

the customer to express user 

needs. 

 Documentation is done at later 

stages. 

 Reduce the usability of 

components. 

 Needs special skills for the team. 

  

Here is a consolidated presentation to illustrate most of the popular software development models. 

The principle of generality is closely related to the principle of anticipation of change. It is important in 

designing software that is free from unnatural restrictions and limitations. One excellent example of an 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 25 
 

unnatural restriction or limitation is the use of two digit year numbers, which has led to the "year 2000" 

problem: software that will garble record keeping at the turn of the century. Although the two-digit limitation 

appeared reasonable at the time, good software frequently survives beyond its expected lifetime. 

For another example where the principle of generality applies, consider a customer who is converting business 

practices into automated software. They are often trying to satisfy general needs, but they understand and 

present their needs in terms of their current practices. As they become more familiar with the possibilities of 

automated solutions, they begin seeing what they need, rather than what they are currently doing to satisfy 

those needs. This distinction is similar to the distinction in the principle of abstraction, but its effects are felt 

earlier in the software development process. 

 

Conclusion 

Software engineering and development has generated a multitude of methodologies, tools, and practices 

over the years, but few (if any) have managed to deliver on the value that was promised and more often than 

not are just shifting complexity or cost from one part of the SDLC to another.  A software development life 

cycle (SDLC) is a framework that provides the process consumed by organizations to build an application 

from its inception to its end.   

The software development life cycle abbreviated as SDLC framework.  SDLC framework is a process used 

for developing software applications or products.  It is a procedure performed by the organization and followed 

step by step to develop and design the right quality product for promoting right from development to 

production environment in a timely manner. 

References 

1. Kaner, Cem (November 17, 2006). Exploratory Testing (PDF). Quality Assurance Institute Worldwide 

Annual Software Testing Conference. Orlando, FL. Retrieved November 22, 2014. 

2.  610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology, IEEE, 1990, 

doi:10.1109/IEEESTD.1990.101064, ISBN 9781559370677 

3.  Pan, Jiantao (Spring 1999). "Software Testing" (coursework). Carnegie Mellon University. Retrieved 

November 21, 2017. 

4.  Leitner, Andreas; Ciupa, Ilinca; Oriol, Manuel; Meyer, Bertrand; Fiva, Arno (September 2007). Contract 

Driven Development = Test Driven Development – Writing Test Cases (PDF). ESEC/FSE'07: European 

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software 

Engineering 2007. Dubrovnik, Croatia. Retrieved December 8, 2017. 

5.  Kaner, Cem; Falk, Jack; Nguyen, Hung Quoc (1999). Testing Computer Software (2nd ed.). New York: 

John Wiley and Sons. ISBN 978-0-471-35846-6. 

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103393 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 26 
 

6.  Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software 

Management. Wiley-IEEE Computer Society Press. ISBN 978-0-470-04212-0. 

7.  "Certified Tester Foundation Level Syllabus" (pdf). International Software Testing Qualifications Board. 

March 31, 2011. Section 1.1.2. Retrieved December 15, 2017. 

8.  "Certified Tester Foundation Level Syllabus" (PDF). International Software Testing Qualifications Board. 

July 1, 2005. Principle 2, Section 1.3. Retrieved December 15, 2017. 

9.  Ramler, Rudolf; Kopetzky, Theodorich; Platz, Wolfgang (April 17, 2012). Combinatorial Test Design in 

the TOSCA Testsuite: Lessons Learned and Practical Implications. IEEE Fifth International Conference on 

Software Testing and Validation (ICST). Montreal, QC, Canada. doi:10.1109/ICST.2012.142. 

10.  "The Economic Impacts of Inadequate Infrastructure for Software Testing" (PDF). National Institute 

of Standards and Technology. May 2002. Retrieved December 19, 2017. 

11.  Sharma, Bharadwaj (April 2016). "Ardentia Technologies: Providing Cutting Edge Software 

Solutions and Comprehensive Testing Services". CIO Review (India ed.). Retrieved December 20, 2017. 

12.  Gelperin, David; Hetzel, Bill (June 1, 1988). "The growth of software testing". Communications of 

the ACM. 31 (6): 687–695. doi:10.1145/62959.62965. S2CID 14731341.  

 

http://www.jetir.org/

